Положительные отзывы: 0
Отрицательные отзывы: 0

Продано: 0
Возвраты: 0

2 руб.
Ученик наблюдает падение камня с высоты Л над поверхностью Земли в системе отсчета, связанной с Землей. В начальный момент времени камень покоился, следовательно, его кинетическая энергия была равна нулю: Еk1=0. Потенциальная энергия системы «Земля — камень»: Ep1=mgh. К поверхности Земли камень подлетает со скоростью v, которую можно рассчитать из выражений: v=gt, откуда v=|/2gh. Следовательно, его кинетическая энергия у поверхности Земли Ek2=mv2/2=m2gh/2=mgh. Потенциальная энергия системы «Земля — камень» в этом положении равна нулю: Таким образом, ученик убедился, что в его системе отсчета закон сохранения механической энергии выполняется: Еk1 + Ep1=0 + mgh=mgh, Eh2 + Ep2=mgh + 0=mgh. Следовательно, Ek1 + Epl=Ek2 + Ep2. Второй ученик наблюдает падение этого же камня в системе отсчета, связан ной с лифтом, движущимся вертикально вниз со скоростью и относительно по верхности Земли. В начальный момент времени камень в системе отсчета, связанной с лифтом, имеет скорость v, направленную вертикально вверх, следовательно, его кинетическая энергия E,k1=mv2/2. При этом камень находится на высоте h над поверхностью Земли, поэтом; потенциальная энергия взаимодействия системы «Земля — камень» E,p1=mgh. У поверхности Земли кинетическая энергия камня в этой системе отсчет• равна нулю, так как скорость камня относительно Земли становится равной ско рости лифта: E,k2=0. Потенциальная энергия системы «Земля — камень» в этом положении такжe равна нулю: Е,р2=0. Так как Е,k1 + Е,p1=mv2/2 + mgh, E,k2 + Е,p2=0, второй ученик приходит к выводу, что механическая энергия системы «Земля — камень» не сохраняется. Каким образом можно разрешить возникший парадокс?
Подробное решение. Формат jpg
Отзывов от покупателей не поступало

Похожие товары