Содержимое: 16v-IDZ13.3.doc (132.00 KB)
Загружен: 30.11.2016

Положительные отзывы: 0
Отрицательные отзывы: 0

Продано: 2
Возвраты: 0

110 руб.
1. Вычислить массу неоднородной пластины D, ограниченной заданными линиями, если поверхностная плотность в каждой ее точке μ= μ(x, y)

1.16. D: y = √x, y = x, μ = 2 – x – y

2. Вычислить статический момент однородной пластины D, ограниченной данными линиями, относительно указанной оси, использовав полярные координаты.

2.16. D: x2 + y2 – 2ay = 0, x2 + y2 – ay = 0, x ≥ 0, Ox

3. Вычислить координаты центра масс однородного тела, занимающего область V, ограниченную указанными поверхностями.

3.16. V: z = 9√x2 + y2, z = 36

4. Вычислить момент инерции относительно указанной оси координат однородного тела, занимающего область V, ограниченную данными поверхностями. Плотность тела δ принять равной 1.

4.16. V: 2y = x2 + z2, y = 2, Oy
Подробное решение. Оформлено в Microsoft Word 2003 (Задание решено с использованием редактора формул)
Для удобства просмотра решений ИДЗ на смартфонах, высылается дополнительно файл в PDF-формате
Отзывов от покупателей не поступало