Содержимое: 25v-IDZ13.2.doc (150.50 KB)
Загружен: 19.11.2016

Положительные отзывы: 0
Отрицательные отзывы: 0

Продано: 1
Возвраты: 0

100 руб.
1. Расставить пределы интегрирования в тройном интеграле если область V ограничена указанными поверхностями. Начертить область интегрирования

1.25. V: x = 2, y ≥ 0, z ≥ 0, y = 3x, z = 4(x2 + y2)

2. Вычислить данные тройные интегралы.

V: 0 ≤ x ≤ 2, −1 ≤ y ≤ 0, 0 ≤ z ≤ 4

3. Вычислить тройной интеграл с помощью цилиндрических или сферических координат.

, υ: 4 ≤ x2 + y2 + z2 ≤ 16, y ≤ √3x, y ≥ 0, z ≥ 0

4. С помощью тройного интеграла вычислить объем тела, ограниченного указанными поверхностями. Сделать чертеж.

4.25. z ≥ 0, y + z = 2, x2 + y2 = 4
Подробное решение. Оформлено в Microsoft Word 2003 (Задание решено с использованием редактора формул)
Для удобства просмотра решений ИДЗ на смартфонах, высылается дополнительно файл в PDF-формате
Отзывов от покупателей не поступало