Содержимое: 6v-IDZ13.2.doc (155.50 KB)
Загружен: 19.11.2016

Положительные отзывы: 0
Отрицательные отзывы: 0

Продано: 5
Возвраты: 0

100 руб.
1. Расставить пределы интегрирования в тройном интеграле если область V ограничена указанными поверхностями. Начертить область интегрирования

1.6. V: x = 0, y = x, y = 5; z ≥ 0, z = 2x2 + y2

2. Вычислить данные тройные интегралы.

V: 0 ≤ x ≤ 1, −1 ≤ y ≤ 0, 1 ≤ z ≤ 2

3. Вычислить тройной интеграл с помощью цилиндрических или сферических координат.

, υ: 4 ≤ x2 + y2 + z2 ≤ 16, y ≤ √3x, y ≥ 0, z ≥ 0

4. С помощью тройного интеграла вычислить объем тела, ограниченного указанными поверхностями. Сделать чертеж.

4.6. x2 + y2 = 4, z = 4 – x – y, z ≥ 0
Подробное решение. Оформлено в Microsoft Word 2003 (Задание решено с использованием редактора формул)
Для удобства просмотра решений ИДЗ на смартфонах, высылается дополнительно файл в PDF-формате
Отзывов от покупателей не поступало