Содержимое: 21113193409107.rar (192.17 KB)
Загружен: 30.06.2013

Положительные отзывы: 1
Отрицательные отзывы: 0

Продано: 90
Возвраты: 0

35 руб.
ТЕСТ “ВЫСШАЯ МАТЕМАТИКА” (1 ЧАСТЬ), количество вопросов - 115.
Задание 1
Вопрос 1. Когда возникла идея о бесконечности числового ряда?
1. В I веке до н.э.
2. Во II веке до н.э.
3. В III веке до н.э.
4. В IV веке до н.э.
5. В V веке до н.э.
Вопрос 2. Какое из чисел не является рациональным?
1.
2. 0.1
3. 0.111.....
4.
5.
Вопрос 3. Какое из чисел не является действительным?
1. е (основание “натуральных логарифмов”)
2.
3.
4.
5.
Вопрос 4. В какой строке свойство кватернионов записано с ошибкой?
1.
2.
3.
4.
5. kj=jk
Вопрос 5. Какое трансфинитное число получится в результате увеличения трансфинитного числа на 1000000?
1.
2.
3.
4. 1000000
5.
Задание 2
Вопрос 1. Как можно сформулировать основные направления математических исследований в общественных науках?
1. Исследования в области линейного программирования
2. Исследования в области нелинейного программирования
3. Исследования в области экономики
4. Исследования в области кибернетики
5. Исследования в части точного описания функционирования общественных систем и их частей и исследования влияния сознательного воздействия (управления) на функционирование социальных структур и течение социальных процессов.
Вопрос 2. Какое предположение лежит в основе использования матрицы коэффициентов выживаемости и рождаемости?
1. Предположение о неизменности выживаемости и рождаемости
2. Предположение об однородной возрастной структуре
3. Предположение о прекращении эпидемий на рассматриваемом временном интервале
4. Предположение об отсутствии войн
5. Предположение об отсутствии стихийных бедствий
Вопрос 3. Какая гипотеза является следствием рассмотрения модели изменения численности аристократов в племени Нетчез?
1. Количество аристократов в племени было стабильным
2. Племя не имело стабильной классовой структуры
3. Племя вело жестокие войны
4. Количество “парий” (неимущих) в племени постоянно возрастало
5. Общая численность племени не могла быть стабильной
Вопрос 4. Какая из гипотез не использовалась в простейшей модели экономического роста?
1. Общий доход равен сумме затрат на предметы потребления и сбережений
2. Сбережения равны затратам на средства труда
3. Доля сбережений не равна нулю
4. Производство дополнительной продукции пропорционально дополнительным капиталовложениям
5. Рост производства дополнительной продукции опережает рост затрат
Вопрос 5. Как чаще всего целесообразно решать проблему, возникающую при необходимости учета дополнительных факторов в очень большой и сложной экономической модели?
1. Ввести в модель новые категории и зависимости
2. Постараться выделить (разработать) подмодели, в которых будут учтены дополнительные факторы
3. Разработать модель заново с учетом дополнительных факторов
4. Упростить модель, затем учесть дополнительные факторы
5. Учесть в модели всю имеющуюся информацию
Задание 3
Вопрос 1. Какая из геометрических фигур не изучается планиметрией?
1. Треугольник
2. Ромб
3. Параллелепипед
4. Окружность
5. Параллелограмм
Вопрос 2. Какая из формулировок является определением?
1. Существуют по крайней мере две точки
2. Каждый отрезок можно продолжить за каждый из его концов
3. Два отрезка, равные одному и тому же отрезку, равны
4. Прямой АВ называется фигура, являющаяся объединением всевозможных отрезков, содержащих точки А и В
5. Каждая прямая разбивает плоскость на две полуплоскости
Вопрос 3. Какая из формулировок о параллельных прямых по смыслу совпадает с пятым постулатом Евклидовских “Начал”?
1. Через точку, не лежащую на данной прямой, проходит единственная прямая, не пересекающая данную прямую
Вопрос 4. Найдите ложное утверждение. Два треугольника равны, если они имеют соответственно равные:
1. три стороны
2. три угла
3. сторону и два прилежащих угла
4. два катета
5. гипотенузу и катет
Вопрос 5. Найти пару равновеликих геометрических фигур:
Задание 4
Вопрос 1. Какое утверждение противоречит V постулату Евклида?
1. Множество точек, лежащих по одну сторону от данной прямой на одном и том же расстоянии от нее, есть прямая
2. Сумма углов треугольника равна 180
3. Существуют подобные неравные треугольники
4. Сумма углов всякого четырехугольника меньше 360
5. Две параллельные прямые при пересечении их третьей прямой образуют равные соответственные углы
Вопрос 2. Какое из высказываний является аксиомой параллельности Лобачевского?
1. Через точку, не лежащую на данной прямой, проходит единственная прямая, не пересекающая данную прямую
2. Две прямые, параллельные третьей прямой, параллельны между собой
3. Существует такая прямая а и такая, не лежащая на ней точка А, что через точку А проходит не меньше двух прямых, не пересекающих прямую а
4. Две прямые, перпендикулярные третьей прямой параллельны
5. Прямые, не имеющие общих точек, называются параллельными
Вопрос 3. По равенству каких из заданных соответствующих элементов двух треугольников в геометрии Евклида делается вывод о подобии треугольников, а в геометрии Лобачевского - вывод о равенстве треугольников?
1. По трем сторонам
2. По двум сторонам и углу между ними
3. По катету и гипотенузе
4. По стороне и двум прилежащим углам
5. По трем углам
Вопрос 4. Указать число, которое не может быть суммой углов четырехугольника на плоскости Лобачевского:
1. 100
2. 270
3. 300
4. 330
5. 360
Вопрос 5. Указать число, которое не может быть суммой углов сферического треугольника:
1. 440
2. 190
3. 170
4. 360
5. 510
Задание 5
Вопрос 1. Какое из понятий не является основным и подлежит определению в планиметриях Евклида и Лобачевского?
1. Отношение “точка В лежит между точками А и С”
2. Точка
3. Расстояние
4. Угол
5. Прямая
Вопрос 2. Найдите аксиому I группы.
1. Для любой прямой существуют ровно две полуплоскости, ограниченные этой прямой
2. Существуют по крайней мере три точки, не лежащие на одной прямой
3. Для любых точек А и В выполняется равенство
4. Равенство выполняется тогда и только тогда, когда точка В принадлежит отрезку АС
5. Всякое движение есть взаимно однозначное соответствие
Вопрос 3. Какое из высказываний непосредственно следует из аксиом принадлежности?
1. Пусть прямая а не проходит через точки А, В и С. Тогда если прямая а пересекает отрезок АВ, то она пересекает еще один и только один из отрезков ВС или АС
2. Если луч с началом в вершине угла проходит через внутреннюю точку угла, то все его точки, кроме начала, лежат внутри угла
3. Для любых двух точек А и В существует такая точка С, что точка В лежит между А и С
4. Две прямые имеют не более одной общей точки
5. Из трех точек, лежащих на одной прямой, одна и только одна лежит между двумя другими
и т.д.

ЕСЛИ ВАМ ЧЕМ-ТО НЕ ПОНРАВИЛАСЬ РАБОТА, УКАЗЫВАЙТЕ В СООБЩЕНИИ E-MAIL, Мы обязательно свяжемся с вами и разберем все ваши претензии в течении суток.
Если вам понравилась работа,пожалуйста, оставьте отзыв,этим вы поможете увеличить список товаров недорогих,но качественных работ.
Работы в формате *.rar открывается архиватором, скачайте любой бесплатно и откроется.
22.05.2014 14:36:25
супер! спасибо)